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Introduction

Breast cancer is one of the most common malignancies in the western world, and increases in incidence
are being seen worldwide. Risk factors for the development of breast cancer remain largely unknown,
with up to 75% of breast cancers occurring in the absence of established risk factors. The three risk
factors that have been established are: family history of breast cancer, metabolic factors related to
hormone production, and exposure to X-irradiation (Gail and Benichou, 1992; Claus et al., 1994). This
study proposes that the last mentioned factor, exposure to ionizing radiation, is actually indicative of a
larger involvement of genotoxicity in the etiology of breast cancer. This suggests that exposure to
carcinogenic chemicals and susceptibility to mutagenesis and carcinogenesis play a significant role in
determining who will develop a tumor of the breast. Indeed, evidence is mounting that the two known
breast cancer susceptibility genes, BRCA1 and BRCA2 are actually DNA repair genes that modulate the
genotoxic effects of environmental exposures (Scully et al., 1997; Sharan et al., 1997). Although there is
bound to be some element of tissue specificity for both genotoxic exposure and susceptibility to DNA
damage, it is impractical to monitor genotoxic exposure in breast tissue itself. Blood, however, and its
progenitor tissue bone marrow, are present throughout the body, and most xenobiotic exposures to the
breast are likely to be transported to the breast tissue through the blood. We have therefore proposed to
assay for somatic mutation, the ultimate outcome of genotoxic DNA damage, in blood samples from
newly diagnosed breast cancer patients and matched controls. We are applying two such assays,
mutation at the HPRT gene in lymphocytes and at the GPA gene in erythroid cells. These are the only
two widely applied (and applicable) assays for human somatic mutation (Grant and Jensen, 1993). The
association between human carcinogenesis in general, and somatic mutation as measured with the HPRT
assay has recently been discussed by Simpson (1997), and hepatocellular carcinoma patients have been
shown to exhibit elevated somatic mutation frequencies with the GPA assay (Okada et al., 1997). These
studies are similar to those of Spitz and co-workers, who have shown that sensitivity to bleomycin (a
crosslinking agent used to diagnose the cancer-prone syndrome Fanconi anemia) (Wu et al., 1996), and
benzo[a]pyrene diol epoxide (a mutagenic component of tobacco smoke) (Wei et al., 1996) are risk
factors for cancers of the lung and of the head and neck. The mutagenicity assays proposed in the
present study are much less specific to particular environmental agents than those of Spitz, and are
therefore more appropriate for application to breast cancer, where there is much less information on
potential causative genotoxic exposures.

Body

In the present study, we will establish that there is indeed a correlation between measurable somatic
mutation frequencies at these reporter genes in the blood and breast cancer incidence, presumably as a
result of concurrent accumulation of mutation at breast cancer-related oncogenes (Bieche and Lidereau,
1995). We propose to apply both mutation assays to the same population to determine the strength of
the correlation between mutation at these two loci in a population lacking a known genotoxic exposure.
In studies of known exposures to both radiation and chemicals, the correlation of the GPA and HPRT
mutant frequencies is very high, indicating that individual factors modifying the mutational response
affect both biomarkers similarly (Perera et al., 1993; Hirota et al., 1994). This study, unlike those
compiled in Grant (2001), is designed specifically to compare newly diagnosed breast cancer patients to
age-matched controls. Therefore, we can determine whether somatic mutational burden might serve as a
significant risk factor for breast cancer incidence, when taken in the context of the known breast cancer
risk factors currently applied through the Gail and Claus breast cancer risk models (Gail and Benichou,
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1992; Claus et al., 1994). The data published in Grant (2001) is that originally presented as preliminary
studies for this grant. It consists of a meta-analysis of HPRT data from the literature, as well as our own
GPA data from several studies of heterogenous cancer patients that were to be treated with known
genotoxic chemotherapies.

The original submission of this grant was done under the auspices of MWH 93-108, an IRB that allowed
for blood sampling and administration of a questionnaire detailing exposure history and known risk
factors for patients with breast, colon, endometrial and ovarian cancer. This protocol allowed for a
number of different assays of "genomic stability", including the HPRT and GPA somatic mutation
assays, assays of DNA repair capacity, measurements of mutagen sensitivity, etc. by a group of
collaborators. Much of the past year has involved the development of an IRB protocol specifically
designed for this study, with myself as the principal investigator, with the same name as this grant and
with no provisions for further studies not detailed in this grant. This was required by new regulations
governing IRB protocols. Such an IRB has been submitted for expedited review and will go into effect
for August, 2001 (perhaps it was in anticipation of such problems that the study section insisted that the
study would take longer than I had initially proposed). This experience prompted me to develop and
submit a DOD Core grant proposal ("Mitogenesis, Mutagenesis and their Interaction in the Etiology of
Breast Cancer") that would fund a research infrastructure for our Comprehensive Cancer Center,
administering questionnaires to all consenting breast cancer patients and providing a bank of blood and
viable cell samples for investigators working on the interaction between hormonal and genotoxic risk
factors in the development of breast cancer. The faculty of this Core are required to share data on their
multiple endpoints in order to better detect interactions that might be crucial to the development of
breast cancer, and that might allow for optimal intervention and prevention.

Given that we could not sample patients until our new IRB was accepted, we recruited and trained our
staff. Ms. Michelle Huerbin (B.S., M.P.H. in Health Services Administration) was hired as Research
Coordinator. She previously performed this role for the University of Pittsburgh Cancer
Institute/Magee-Womens Hospital Cancer Genetics Program, where she coordinated studies of breast
cancer genetics (specifically BRCA1 and BRCA2 heterozygosity) and risk assessment. Ms. Huerbin
also has experience as a laboratory technician, and has been trained in the performance of the flow
cytometric GPA assay. Ms. Britt Luccy, the technician on the original proposal, has gone on to graduate
school at Johns Hopkins, her replacement is Ms. Julie Conte, who was an intern in my laboratory last
summer, and is proficient in the HPRT assay.

HPRT training has been performed on established lymphoblast cell lines, and, as detailed in the M.S.
thesis of my student Mr. Bob Babra, our laboratory experience pointed towards an important correlation
between cell viability (expressed as "cloning efficiency", CE) and mutation frequency. In order to see
whether CE was also an important factor in population studies, we analyzed HPRT mutation frequency
data from a large cohort of smokers and "matched" non-smokers published by Jones et al. (1993), the
largest such study that provided individual CE for each subject. The results, given in Table 1,
demonstrate that while aging and smoking status are usually considered characteristics that should be
matched in epidemiological studies of mutation, cell viability actually has a far greater effect. This
effect was reported in Cole et al. (1988), who advised that any assay with a CE of less than 30% should
be considered invalid. The reason this advice is ignored is probably practicality. Unlike smoking status
or age, CE cannot be determined prior to the performance of the assay, so that Cole et al. are actually
advising investigators to invalidate assays that may represent half of their data (if the Jones et al. data in
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Table 1 are representative). Instead, we suggest that patients should be matched to controls of similar
CE. Since this cannot be done a priori, it requires the development of a database of controls with a
distribution of ages, smoking histories and cell viabilities.

Table 1. Potential factors affecting HPRT somatic mutation frequency

HPRT Mf(X 106)

Population N Mean Median Range

Jones et al. normal adults 120 8.5 ± 5.96.9 1.2-36.5

Jones et al. normal adults (CE > 30%) 60 6.7 ± 4.6 5.8 1.2-28.4

Jones et al. normal adults (CE < 30%) 60 10.3 ± 6.5 7.5 2.1-36.5 p < 0.0001

Jones et al. normal adults (nonsmokers) 62 7.5 ± 5.9 5.7 1.4-36.5

Jones et al. normal adults (smokers) 58 9.6 ± 5.3 7.5 1.2-24.1 p = 0.055

Jones et al. (nonsmokers, CE > 30%) 30 6.2 ± 4.9 5.0 1.4-28.4

Jones et al. (nonsmokers, CE < 30%) 32 8.7 ± 7.2 6.7 2.1-36.5 p = 0.11

Jones et al. (smokers, CE > 30%) 30 7.2 ± 4.3 6.8 1.2-24.1

Jones et al. (smokers, CE < 30%) 28 12.1 ± 5.0 12.2 4.4-21.3 p = 0.0002

Key Research Accomplishments

Key accomplishments for this first year include the recruitment and training of study personnel. The
development of an IRB protocol specific to this project that satisfies the funding agency and the local
IRB committee and is considered feasible by our study personnel and our clinical colleagues.
Publication of the retrospective data that supported the funding of the grant. The finding of an important
confounding effect, CE, in our training data that will improve our ability to demonstrate subtle effects in
the greater study.

Reportable Outcomes

Successful funding of this project allowed me to publish our preliminary results in Grant (2001).
Training data from personnel on this study contributed to the M.S. thesis of Bob Babra in the department
of Environmental and Occupational Health at the University of Pittsburgh ("Somatic Mutation and
Cancer: Induction, Predisposition and Therapy"). A manuscript is in preparation.
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Conclusions

Problems with the start-up of this project have been addressed by the design of a new, independent IRB.
Similar problems have potentially been addressed in the long term with the submission of a DOD Core
research infrastructure grant. The clinical breast cancer population at Magee-Womens Hospital
continues to increase with the further consolidation of breast care for the 20-hospital University of
Pittsburgh Health System HMO at Magee. We have greater facility with our assays and a team in place
to process samples and data. In addition, my laboratory is now located directly across the street from
Magee-Womens Hospital (as opposed to 11 miles away), which should further facilitate access to
valuable patients and samples. The acquisition of samples will now follow the original three-year
timetable that requires successful processing of approximately two samples per week for the duration of
the grant.
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Abstract

The new field of "molecular epidemiology" attempts to investigate the link between toxic

exposure and an associated health effect by defining presumptive intermediate stages in the

development of the disease state based on known mechanisms. In the development of

malignancy, these steps may involve: exposure to known mutagens and carcinogens,

internalization and potentially metabolism of a chemical agent, characterization of the interaction

of the agent at its site of action (usually DNA), characterization of induced preneoplastic changes

and, in certain instances, early detection of the cancer itself. These processes can be monitored

through biomarkers specific to each of the steps in the progression towards disease, and a host of

applicable techniques are now available. An overview of such techniques is presented, with an

emphasis on techniques offering insight into the malignant process itself. Evidence is presented

that suggests that although there are many potential contributing mechanisms to carcinogenesis,

mutagenesis remains the dominant driving force behind the process. Several methods of

monitoring mutation have shown promise as predictors of cancer incidence. These methods

might also be used as monitors of agents designed to intervene in the process and prevent the

development of overt disease.

Running Title: Biomarkers of human environmental carcinogenesis

Key Words: Genetic toxicology, carcinogenesis, mutagenesis, GPA, HPRT, DNA repair,

mutagen sensitivity
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Introduction

It has become fashionable to place the word "molecular" before the name of a classical field of

scientific research and consider it reinvented. This, often in the absence of what the word

actually means in this context, and how this refined and redefined field truly differs from its

progenitor. In the case of "molecular" toxicology, there has been a real shift from the traditional

activity of testing chemical toxicity in model systems to studies in the true organism of interest,

man. These human studies have their own advantages and disadvantages; they are, by definition,

epidemiological, and epidemiology is very different from experimental science, requiring larger,

more expensive and more interdisciplinary studies. Often the investigator has no control over

the agent of exposure or the dose or doses administered; indeed, in most cases, one must rely on

"found" experiments, such as accidental exposures, which is often uncomfortably similar to

ambulance chasing. For the accumulation of significant data, more than an anecdotal case report

is required, so there must be a relatively large exposed population, with a considerable increase

in incidence of disease. Indeed, this field often relies upon the pharmaceutical industry to

provide a large population of exposed individuals exhibiting unanticipated toxic effects. This

relative inability to study an agent of the investigator's choice is offset by the fact that real

human beings are the source of data, so that there is no question as to the applicability of the

"model" system. These studies therefore involve what has become known in biomedical science

as "translational" research, i.e. science that has direct application in real-life situations.

In the context of public health, the promise of molecular toxicology and molecular epidemiology

is the possible identification of an impending disease state prior to clinical manifestation,

potentially allowing for biological, chemical or behavioral intervention and, perhaps, prevention.

This is a particularly appropriate approach to cancer, since many avenues of research have

shown carcinogenesis to be a multi-step process with a duration or gestation time of decades.

Cancer can occur due to the delayed effects of a single short-term exposure, such as a radiation

accident, or due to the effects of an otherwise asymptomatic chronic exposure. In this delayed or

accumulative aspect of its etiology, it is very possible that cancer can act as a paradigm for other

late-onset diseases, in that somatic effects are more important factors in the development of the

disease than genetic predisposition. With the impending completion of the human genome
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project, however, attention has increasingly moved towards these genetic factors, even in

diseases of aging. Besides the many technological tools being developed in this area, such as

gene expression and polymorphism "chips", the main reason for this concentration on genetics is

that it can fully ascertained at any age. For example, a blood sample from a 80 year old contains

all the genetic information that would have been available had the subject been sampled at birth.

In contrast, toxicological exposures wax and wane, overlay one another and are ongoing at any

point of sampling; thus, there is no easily obtainable record of overall exposure history similar to

that of the underlying genetic background.

Molecular Epidemiology

In the classical toxicological epidemiology model, a defined health effect, often a well-

characterized clinical disease, is perceived as occurring due to the exposure of an organism to a

deleterious biological, chemical or physical agent. This strict cause-and-effect relationship is

mediated through a number of unknown modifiers of exposure and response, related to the

anatomy, biochemistry and physiology of the organism under consideration. The molecular

epidemiological model, as delineated in Figure 1, attempts to expand on the concept of such

biological modification by breaking the process into sequential stages that must be traversed in

order to manifest disease. These intermediate stages are based on mechanistic studies and

hypotheses that attempt to identify the target tissue or cell type (which may not be the same as

the cell type ultimately affected by the disease, or even at the same site as the eventual disease

manifestation), the response or responses necessary to convert exposure into biological effect,

and, if possible, preclinical evidence of impending disease. As in any hypothetical system, it is

important that there be experimentally verifiable predictions indicative of each stage. These

indicators of biological modification are known as biomarkers, and since they precede clinical

disease, they are thought of as "intermediate" biomarkers that can be used to monitor the

progress of the disease process.

The development of the field of molecular epidemiology has been, and continues to be hindered

by a lack of complete understanding and cooperation between the practitioners of the two

progenitor disciplines, laboratory toxicologists and epidemiologists. For the toxicologist, the
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traditional laboratory truism "if you need statistics to prove your point you didn't design the

experiment properly" is difficult to reconcile with epidemiological studies. On the other hand,

epidemiologists, especially clinical epidemiologists, often seem to forget that statistical

associations are not and cannot be proof of causality. The proper course is for epidemiological

studies to generate mechanistic hypotheses that are then evaluated experimentally. Too often

there is a complete disconnection between the two disciplines. Epidemiologists hire technicians

to perform tests they have seen published in the literature, often without a thorough

understanding of the relevance or implications of the results. Toxicologists, on the other hand,

attempt to apply their knowledge of experimental design to epidemiological studies, without an

appreciation for the statistical methodologies necessary to adjust for unanticipated confounding

effects. In many ways, the situation is reminiscent of the difference between academic and

industrial or regulatory toxicologists: academic toxicologists apply a continually revised or

"improved" protocol to a series of individual, often unrelated projects, whereas industrial and

regulatory toxicologists apply a standardized, but almost always obsolete or sub-optimal protocol

to a very systematic study of an area of proven concern. Thus, in collaboration, the laboratory

toxicologist can address the mechanistic relevance of a biomarker to the disease of interest,

troubleshoot and adapt the protocol to the types of samples that can be obtained, and offer the

possibility of experimental follow-up on mechanistic hypotheses that might result from an

epidemiological study. The epidemiologist, in turn, directs the study to a question of immediate

concern to medicine or public health and allows for testing of both a mechanistic hypothesis and

the biomarker designed to detect and monitor it in human studies.

Biomarkers of Carcinogenesis

To propose and test biomarkers of a specific disease, some insight into its etiology must be

available. There have been many models of the carcinogenic process proposed: epigenetic, viral,

toxicological, endocrine, immune surveillance, histopathological, etc., but the somatic mutational

model (Nowell, 1976) has become predominant for a number of reasons. First, there was the

discovery of dominant activated oncogenes and recessive tumour suppressor genes, and their

identification in all types of cancer (Bishop, 1987; Green, 1988). Second, the linking of these

mutations with histological progression, as best exemplified by the Vogelstein model of
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colorectal cancer (Vogelstein et al., 1988). Third, there is the unique ability (and willingness) of

the supporters of this model to integrate aspects of other models into itself. For example, the

somatic mutational model has to be compatible with the viral model, since activated oncogenes

were first identified in oncogenic viruses, and only subsequently were shown to have

homologues in the host genome. The model is also flexible enough to allow that epigenetic

changes in gene expression, such as endocrine stimulation, hyper- or hypomethylation of genes

can have the same effect as mutation in fulfilling the requirements of a step in the carcinogenic

pathway. Toxicologists are satisfied with the mutational model in that it describes a multistep

process involving classical mutations that can be caused by radiation or electrophilic chemicals.

Thus, most intermediate biomarkers of cancer presume that mutation is the only or principal

mechanism of carcinogenesis and are designed to detect mutagenic exposures, premutagenic and

mutagenic lesions and the biological effects of somatic mutations. Toxicologists must be

reminded that not all cancer researchers are prepared to so directly equate carcinogenesis with

mutagenesis, despite the fact that this principle underlies almost all "carcinogenicity" testing and

costs industry billions.

Carcinogenic Exposure

Practically, there are two approaches for studying carcinogenic exposures: identification of

actual exposures and identification of potential exposures. Obviously, the former is often

retrospective, whereas the latter is prospective. Applied primarily to anthropogenic chemicals, a

large number of carcinogenicity, mutagenicity and other types of assays have been developed to

determine or predict whether a chemical is a potential human carcinogen. The gold standard is

the chronic animal cancer test, with rodent carcinogenicity tests the most widely applied (Gold et

al., 1997). These lifetime studies are time consuming and expensive, often have questionable

application to humans, and have been increasingly criticized by animal rights activists. Attempts

to establish single-cell "short-term" assays have usually been based on a mutational basis for the

carcinogenic process, and measured genotoxicity (Zeiger, 1997). All of these tests suffer from

fundamental oversimplifications in their basic assumptions. For example, they must assume that

biological effects of exposures to multiple genotoxicants (which include all in vivo exposures)

can be estimated from additively combining the efficacy of individual constituents, suggesting
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that interactions such as synergism and antagonism either do not occur, or overall, balance one

another out. They also must assume that all genotoxicants have simple dose-response kinetics,

ignoring the possibilities of hormesis or other higher order interactions. There are presently a

huge number of man-made chemicals in use without significant toxicological data; however,

there are at least two promising approaches towards improving the efficiency of testing in the

near future. First is the adoption of high-throughput and/or high-content screening technologies,

utilizing advances in fields such as robotics, flow cytometry, computer-directed microscopy,

mass spectroscopy, etc. to better apply our current knowledge of carcinogenesis. Such

technologies have already been successfully applied in some aspects of toxicology (Taylor et al.,

1994; Kramer, 1998; Burchiel et al., 1999; Van Bocxlaer et al., 2000), but not to the degree they

have been embraced by pharmacologists for drug design (Persidis, 1998; Silverman et al., 1998;

Hopfinger and Duca, 2000; Sundberg 2000). A second promising approach towards increasing

our capacity to screen chemicals has also been increasingly utilized in pharmacological drug

design: the development of so-called in silico models, or predictive computational toxicology.

Many approaches have been tried, from attempts to reproduce the logic of a working toxicologist

through hierarchical sets of rules and decision trees, to correlation of chemical structure or

physicochemical properties with biological activity, to artificial intelligence systems such as

neural networks that attempt to combine the best features of each approach (Benfenati and Gini,

1997; Benigni and Richard, 1998; Rosenkranz et al., 1999). The challenge is much greater for

toxicologists than for drug designers, however, since identification of a single successful lead

compound can make the approach successful in the latter case, whereas missing a single toxic

compound in the former could result in tragedy. Indeed, predictive models must continue to be

developed through continuous interaction with traditional toxicologists, validating and extending

models through targeted testing of new agents, and taking into account the greater considerations

of the entire human organism and population (Holtzman, 2000).

The second approach to defining exposures takes place in the field, often after an exposure has

occurred, or is suspected. Although this is the natural beginning of an epidemiological

toxicological study, such physical measurements are traditionally the province of other

disciplines, such as the industrial hygienist or the health physicist. Indeed, there is often no

attempt, outside of the work environment or agents, such as radon, that are sometimes
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specifically targeted by local departments of health, to measure or monitor the "normal"

exposures that are thought to give rise to three-quarters of all cancer (Higginson and Muir,

1976). Besides the same potential problems with kinetics and interactions mentioned above,

measuring genotoxicity in the field is complicated by the shear numbers of agents that a human

being or population come into contact with, especially over the decades it may require for cancer

to appear. One approach has been to develop simple functional assays or "biosensors" that react

to a spectrum of effectors rather than a single specific agent, such as a particular chemical.

These instruments often use biological detectors, whole organisms or molecules such as

antibodies or enzymes activated by interaction (binding) to xenobiotic agents to indicate the

presence of such agents in the environment (Schubnell et al., 1999). This approach is still

restricted by our understanding of the underlying mechanism of action of such agents, and again,

the application to cancer usually involves the assumption of a genotoxic mechanism, although

methods to detect possible agents acting through an epigenetic hormonal mechanism have also

been developed (Seifert et al., 1998).

Biomarkers of Exposure: Internal Dose

To manifest a carcinogenic effect, most agents must be internalized within an organism and

within a cell. "Biomonitoring" of potentially toxic exposures involves measurement of the agent

in a tissue or bodily fluid readily available for sampling (Zielhuis, 1978). In experimental

systems, a potentially toxic substance can be labeled and administered to the whole animal by

various methods, and the uptake, distribution, persistence and elimination investigated by

recovery of the label in urine and feces. In potential human exposures similar measures can be

used to infer the magnitude and importance of the original dose. Such studies are complicated

by the metabolism the original agent undergoes in vivo. Indeed, if the number and types of

exposures humans normally undergo are daunting enough, the expansion of these effects through

metabolism magnify the problem many fold. In an effort to mobilize and detoxify potentially

toxic substances the body metabolizes or "biotransforms" them into more water soluble

derivatives; unfortunately this often makes them more reactive and therefore more genotoxic, in

effect also "activating" them. Thus, it is usually not only the original agent that must be

monitored in bodily fluids, but a complex mixture of metabolites, which themselves have
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different potentials for toxicity. This metabolism of chemical agents has become an important

element in the individual "exposure modification" that must translate an exposure into a disease,

and differences in the ability to metabolize chemicals have been shown to significantly affect

their ultimate biological activity (Davies, 1988). Indeed, most molecular epidemiological studies

of "genetic susceptibility" to genotoxic agents have involved functional or genetic markers of

metabolic enzymes (Autrup, 2000; Guengerich, 2000). Considering the number of potential

phase I (esterases, cytochrome P-450 monooxygenases, epoxide hydratase, etc.) and phase II

(methyltransferases, sulfotransferases acetyl tranferases, glucuronyl transferases, glutathione-S-

tranferases, etc.) enzymes involved in this process it is difficult to predict the fate of a chemical

in a biological system, although computational models have been developed (loannides et al.,

1994; Klopman et al., 1994). There is an unfortunate tendency to look for associations between

polymorphisms in these genes and health effects without ever determining whether the

polymorphism has any effect on functionality. Since epidemiology by definition can only be

hypothesis generating, demonstration of such an association should only provide further impetus

for a functional analysis of the polymorphism and its mechanistic role in the disease process

(DuPont et al., 1995; Traver et al., 1997).

Biomarkers of Exposure: Biologically Effective Dose

Genetic toxicology is a rather unique subspeciality of toxicology in that the target molecule,

DNA, is neither cell-type- or organ-specific. Thus, a genotoxic effect, potentially contributing to

carcinogenesis, can occur in almost any cell in the body. Certain non-genotoxic carcinogenic

agents, such as transforming viruses and xenoestrogens are likely to be more restricted in the

types of cells they can affect. Traditionally, genotoxicants have been defined rather narrowly as

agents that interact directly with the DNA, despite the fact that agents affecting chromatin

proteins, microtubules, etc. can affect DNA replication and chromosome segregation. Therefore

measurement of the "effective" dose of a carcinogen has often been done by quantitating DNA

adducts (or blood protein adducts as a surrogate). The are many methods to do this in bulk, but

the most widely applied is 32P-postlabeling, which yields "spots" of bases with altered migration

in a two-dimensional chromatography system (Randerath et al., 1981; IARC, 1993, 1994). An

advantage of this and similar detection systems is that they display all of the base adduction
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products in a quantitative manner, such that all potential DNA damage can be estimated. The

major disadvantage of such systems is that there are usually multiple species of adducted bases

and, without individually characterizing each species, it is impossible to assign a relative

importance to each spot. Although they must have a minimal persistence to be detectable at all

(i.e. not removed from the DNA too quickly by DNA repair mechanisms), different altered bases

can have very different effects on DNA replication and hydrogen bonding, and therefore on the

types and amounts of resulting mutations. Recent studies have often targeted a single, well

characterized adduction species with monoclonal antibodies; however, such studies assume that

the total genotoxic effect of a mixed exposure can be estimated from a single mutagenic product,

which is not likely to be consistent (Santella, 1999; Poirier and Santella, 2000).

Biomarkers of Disease: Generalized Biological Effect

In keeping with the genotoxicity paradigm for carcinogenesis, interaction of a toxic agent with

DNA does not produce a long-term effect unless it results in an unrepairable mutation, defined as

any heritable change in the amount or structure of the genetic material. Since we are referring to

genetic changes in somatic cells, "heritable" suggests viable clonal propagation of the mutation

through subsequent mitotic "generations". A large number of methods for detecting and

quantitating somatic mutation have been proposed and, to some degree validated in retrospective

studies (MacGregor et al., 1995). Some markers, such as micronuclei or dicentric chromosomes,

are inherently inviable; they therefore serve as indicators of similar processes that leave the cell

mutated but alive (sort of a biomarker of a biomarker). Other monitored events, such as sister

chromatid exchange, result in no genetic damage or biological effects, but are thought to respond

to agents that can, in addition, induce chromosome breakage and/or rearrangement. The best

validated biomarker of somatic mutation is the cytogenetic detection of stable chromosome

aberrations, which has been shown to be predictive of subsequent cancer in two independent

prospective studies (Hagmar et al., 1994, 1998; Bonassi et al., 2000). These studies provide

strong evidence that, while other processes may contribute to human carcinogenesis, induction of

somatic mutation is an important factor in overall cancer incidence. Measurement of gene-

specific mutation has also shown promise as an intermediate biomarker of biological effect.
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Somatic Mutational Analysis

There are two well-established methods for measuring gene-specific in vivo somatic mutation in

humans. Both involve mutation at a non-oncogenic surrogate locus chosen to allow detection of

mutation with single hit kinetics. These well-characterized "reporter" genes are the X-linked

gene coding for hypoxanthine-guanosine phosphoribosyl transferase (HPRT), a ubiquitously

expressed purine scavenger enzyme, and the autosomal gene for erythrocyte glycophorin A

(GPA), the most common sialoglycoprotein on the red cell surface, and the genetic determinant

of the MN blood group. The HPRT gene has been used for many years as a selectable marker in

mammalian cell culture (Chu and Malling, 1968), and this assay system has been adapted to T-

lymphocytes in short term cultures derived from human peripheral blood (Strauss and Albertini,

1979; Morley et al., 1983). The GPA assay is designed to detect a wide range of potentially

inactivating mutations at the GPA locus by flow cytometric analysis of peripheral blood

erythrocytes (Grant et al., 1991; Grant and Bigbee, 1993). The two assays have complementary

features (Table 1). The GPA assay is fast and inexpensive, utilizing flow technology to quickly

quantify rare mutational events. The HPRT assay requires cell culture and drug selection,

making it more expensive and labor-intensive. However, the GPA assay can only be performed

in genetically informative MN heterozygotes, and the mutational basis of the phenotypic

variation cannot be confirmed at the molecular level, whereas the HPRT assay can be performed

in virtually anyone, in a multitude of cell-types, and can be used to generate "mutational spectra"

that potentially can identify the inducing genotoxic agent. In previous studies utilizing both

assays, the correlation between these biomarkers is consistently better than the correlation of

either with physical or environmental estimates of exposure, presumably because both of these

assays take into account both the extent of exposure and individual variation in response to

genotoxic exposure (Grant and Jensen, 1993).

The GPA and HPRT assays have been extensively validated as quantitative measures of

genotoxic exposures. Investigations include exposures to ionizing radiation, such as the

survivors of the bombing of Hiroshima (Langlois et al., 1987, 1993; Hakoda et al., 1988),

accidents such as Chernobyl (Jensen et al., 1995; Livingston et al., 1997) and Goiania (Straume

et al., 1991) and other medical (Nicklas et al., 1990; Grant and Bigbee, 1994), environmental
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(Bridges et al., 1991) and occupational studies (Messing et al., 1989; Straume et al., 1992).

Similarly, the response of these systems to chemical exposures, such as PAHs, and cigarette

smoke has been established in a series of studies of environmental (Jones et al., 1993;

Ammenheuser et al., 1994) and occupational exposures (Major et al., 1992; Compton-Quintana

et al., 1993; Perera et al., 1993; Dubeau et al., 1994; Rothman et al., 1995). Given that these

assays are sensitive to a wide range of genotoxicants, it has been suggested that these measures

of somatic mutation might provide a biomarker of cancer risk associated with genotoxic

exposure (Albertini et al., 1993; Akiyama et al., 1995).

There have been three studies specifically designed to determine whether newly diagnosed

cancer patients have higher somatic mutation frequencies than disease-free individuals, i.e.

whether cancer incidence is associated with increased levels of gene-specific (as opposed to

chromosomal) mutation. In 1989, a study of lung cancer patients with the HPRT assay

demonstrated significantly higher mutant frequencies in the patient population versus controls

(Tompa and Sapi, 1989). A subsequent study of breast cancer patients revealed HPRT mutant

frequencies higher than controls and women with benign breast masses, but the differences failed

to reach statistical significance (Branda et al., 1992). More recently, a significant increase in

mutation at the GPA locus has been reported for a population of hepatocellular carcinoma

patients (Okada et al., 1997).

Several other mutational studies of cancer patients have been performed using the GPA assay,

usually to demonstrate the genotoxicity of the therapeutic regimen (Umeki et al., 1991; Hirota et

al., 1994; Mott et al., 1994; Boyse et al., 1996). Our studies of this type have always involved

analysis of both concurrent disease-free controls and a pre-therapy sample from each patient.

When the results from these two populations are pooled and compared, the patients are

significantly higher for total variant frequency (combining both allele-loss and loss-and-

duplication classes) (p < 0.01) (Figure 2). These data include subpopulations of patients with

breast (Bigbee et al., 1990), prostate (Grant and Bigbee, 1994) and testicular cancer (Perera et

al., 1992). The HPRT assay has also been used extensively to demonstrate a genotoxic effect of

cancer chemotherapy upon circulating lymphocytes. In addition to the two mentioned above,

seven studies have been published in which the frequency of lymphocytes with mutations at the
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X-linked HPRT locus was determined in newly diagnosed cancer patients prior to genotoxic

therapy (Albertini, 1980; Lange and Prantner, 1982; Dempsey et al., 1985; Messing and Bradley,

1985; Sala-Trepat et al., 1990, Ammenheuser et al., 1991, Caggana et al., 1991). In all nine

studies, the overall frequency of somatic mutation at the HPRT locus was higher in the cancer

patients than in concurrent controls. When these data were reviewed and pooled for re-analysis

(Cole and Skopek, 1994), the -2-fold elevation in somatic mutation frequency demonstrated by

this pooled data from cancer patients (N=187) was highly significant (p < 0.001) (Figure 3).

These data suggest that human carcinogenesis is associated with increased in vivo somatic

mutation, and, based on the validation studies detailed above, that these mutation assays can act

as integrative biodosimeters for genotoxic exposures. It is significant that the association seems

to hold not just in tumors with a well-accepted mutagenic etiology, such as lung cancer, but also

in tumor types with viral (hepatocarcinoma) or hormonal (breast, testicular, prostate cancer)

components in their progression. This observation is consistent with the concept of a multi-step

mutational pathway of carcinogenicity where one or a few steps can be fulfilled by epigenetic

factors, but numerous other steps are still dependent on mutagenesis. Since these assays can

measure both transient and persistent DNA damage, in the stem cell and differentiating

hematopoeitic compartments respectively, they show great promise as biomonitors of

chemopreventive measures against genotoxicity, such as antioxidants.

The association of cancer incidence with a modest elevation in somatic mutant frequencies

suggests that cancer can be caused by "normal" or "background" levels of genotoxic exposure.

Individual variation in susceptibility to genotoxic insults would therefore become an important

factor in determining whether mutagenesis, and subsequently carcinogenesis, would result from

a particular exposure. The HPRT and GPA assays have also been applied to individuals and

populations suffering from "DNA repair deficiency" syndromes, which are characterized by very

high cancer incidences. Thus, HPRT mutation has been found to be spontaneously elevated in

homozygotes for the recessive "cancer-prone" disorders Bloom syndrome (Vijayalaxmi et al.,

1983), Fanconi anemia (Vijayalaxmi et al., 1985; Sala-Trepat et al., 1993) and ataxia

telangiectasia (Henderson et al., 1986; Cole and Arlett, 1994), all associated with deficiencies in

resolving DNA double-strand breaks. The GPA assay has demonstrated 10- (ataxia
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telangiectasia), 50- (Fanconi anemia) and 100-fold (Bloom syndrome) increases in the frequency

of spontaneous somatic mutation in these patients (Bigbee et al., 1989; Langlois et al., 1989;

Kyoizumi et al., 1989; Sala-Trepat et al., 1990; Mott et al., 1994; Grant et al., 1998; Grant and

Auerbach, in preparation). HPRT mutant frequencies appear to be elevated in xeroderma

pigmentosum patients, which are characterized by a deficiency in nucleotide excision repair

(Tates et al., 1989; Cole et al., 1992), but there is no evidence for such an increase at the GPA

locus (Langlois et al., 1990). Both assays have demonstrated subtle elevations in mutant

frequency in the premature aging disease Werner syndrome (Fukuchi et al., 1990; Moser et al.,

2000). Thus, from these studies, an alternative explanation for the elevated mutation frequencies

observed in the sporadic cancer patient populations described above, is that instead of sustaining

slightly higher than normal genotoxic exposures, these individuals are characterized by

manifesting slightly higher than normal genetic susceptibilities to genotoxic injury. This

suggestion is similar to the proposal of Hsu (1983), that normal populations should show

interindividual variability in DNA repair capacities, and that those with the highest susceptibility

to unavoidable genotoxic exposures (but still within the range of normal), would be at greatest

risk of developing cancer.

Mutagen Sensitivity

Hsu's own approach to demonstrating this principle was based on another characteristic of the

cancer-prone syndromes: their hypersensitivity to DNA-damaging agents (Auerbach et al., 1979;

Paterson and Smith, 1979, Weksberg et al., 1979). This cellular phenotype has been exploited to

map and clone the underlying genes responsible for these conditions, and lymphocyte mutagen

hypersensitivity continues to be used as a definitive diagnostic laboratory test. Hsu conjectured

that milder forms of this "mutagen sensitivity" phenotype should occur in the human population,

and might contribute to the incidence of "common" tumors in the "normal" population. He

adapted the mutagen sensitivity tests developed for diagnosis of the DNA repair deficiency

diseases into a screening tool based on the induction of transient cytogenetically detectable

chromatid breaks (Cherry and Hsu, 1983; Hsu et al., 1985, 1989, 1991). These studies

demonstrated significant interindividual variation in response of the disease-free population to a

known genotoxic agent, the radiomimetic DNA cross-linking agent bleomycin. They also
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demonstrated that a significantly greater proportion of individuals manifesting a number of

different types of cancer were "hypersensitive" to this mutagen, in that they suffered more DNA

damage when their lymphocytes were exposed to a standard dose of bleomycin. This work has

been carried forward by Spitz and co-workers in a series of studies demonstrating that bleomycin

sensitivity is associated with risk of head and neck (Spitz et al., 1989, 1993; Cloos et al., 1996)

and lung (Wu et al., 1995, 1998) cancer. Hsu et al. (1993a, b) introduced the idea that sensitivity

to other mutagenic chemicals could also be measured by induction of chromatid breaks. In these

studies the inducing agent was 4-nitroquinoline-l-oxide (4NQO), which causes the same type of

DNA damage as UV light, the genotoxic agent implicated in skin carcinogenesis. This principle

has subsequently been applied in the lung cancer study using the polyaromatic hydrocarbon and

tobacco smoke mutagen benzo[a]pyrene diol epoxide (BPDE) as the inducing agent (Li et al.,

1996; Wei et al., 1996).

Biomarkers of Disease: Specific Biological Effect

Just as some would argue that an adduct is not important unless it results in a mutation, there are

those that would argue that the mutation is not important unless it is involved in the progression

of the disease. Screening for mutations in oncogenes and segregation of tumor suppressor genes

(Grant, 1992) blurs the distinctions of public health concerns, such as identifying individuals at

increased risk of cancer, and purely medical concerns, i.e. the early detection of the disease itself.

Whatever the intent of the study, it can take the form of a screen because of the early observation

that tumor cells (and potentially preneoplastic cells as well) can be found in many fluids and

excretia of the body (Papanicolaou, 1949). Advances in cytological techniques, and the

development of antibodies to cell lineage markers and carcinoembryonic antigens maintained

interest in these cells, but it wasn't until the delineation of the role of somatic mutation in

oncogenesis that the possibility of molecular screening arose. Thus, there has been much interest

and some progress in the last decade towards using the molecular detection of so-called "early

mutations" in such biological samples as buccal swabs, mouth rinses, lung lavage, urine, feces,

etc. as diagnostic and prognostic markers (Sidransky, 1997). More recently, it has been found

that free circulating DNA in serum, long known to be at higher levels in cancer patients (Leon et

al., 1977; Shapiro et al., 1983), is primarily derived from necrosing and apoptosing cells (Stroun
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et al., 2000; Jahr et al., 2001). Both activated oncogenes (Sorenson et al., 1994; Anker et al.,

1997) and segregation of tumor suppressor genes (Chen et al., 1996; Nawroz et al., 1996),

reflective of genetic changes in the primary tumor, have been detected by analysis of DNA

amplified from blood samples from cancer patients.

Conclusion

In many ways, the fields of molecular toxicology and molecular epidemiology are in a holding

pattern. There has been a general reluctance to leave the so-called "validation" phase, where

potential biomarkers are evaluated in populations with known (and usually extreme) exposures

and predispositions and move these studies into the general population, and subsequently into

clinical or public health practice. For basic scientists, this involves taking on responsibilities for

interaction with human populations and individuals that some researchers may not appreciate.

From the clinical side, in the absence of an established intervention, there may be little reason or

even justification for "predicting" disease. Only through application of those biomarkers that do

exist, such as the promising technologies discussed in this report, can the basic scientist become

comfortable with such translational research, and can preventive measures be developed to

provide the practitioner with an armamentarium to "treat" preneoplastic disease.

The biomarkers available and in development for cancer reflect, to a large degree, the

inclinations of toxicologists to equate mutagenesis with carcinogenesis. Indeed, data presented

here suggest that although other mechanisms are known to contribute to cancer, mutation, both

chromosomal and gene-specific, appears to be involved in all cancers. This in turn suggests that

if you live long enough, you will inevitably develop cancer, and that the specific type of cancer

will be the one you are most susceptible to, due to the types of exposure you have sustained, as

well as your underlying genotype. Thus, a certain level of genotoxic effect may be sufficient to

cause hepatocarcinoma in an individual with a chronic hepatitus B infection, but a slightly later

onset kidney tumor in an individual without such a viral predisposing factor. The strength of the

mutational model of cancer lies in its ability to rationalize itself with these other factors. We

know, as mentioned above, that viruses can deliver an activated oncogenes (retroviruses), or

provide a protein sink for tumor suppressor gene products (animal viruses) (Butel, 2000).
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Genetic factors in cancer have been found to provide congenitally a mutation that traverses one

step in the carcinogenic pathway (Knudson, 1992), or confer a "mutator" phenotype causing a

more rapid progression through the pathway (Bhattacharyya et al., 1994), or both. Hormonal

factors, even if they are not overtly genotoxic, can mimic mutation via their effects on

transcriptional regulation (Webb et al., 1999), or affect mutation rates as suggested by the
"mitogen-mutagen" hypothesis (Henderson and Spenser Feigelson, 2000). Toxicologists must

also be willing to expand their definition of a mutagen; for example, since aneuploidy is

unquestionably a mutational event, agents that cause it through interaction with centromeric

proteins or microtubules (as opposed to direct interaction with DNA) should be considered

mutagens. Despite the present success of mutationally-based biomarkers, we must be aware that

application of such surrogate end points for cancer depends on the confidence the entire field

feels in the underlying mechanistic basis of cancer. Some clinicians maintain that the only

credible intermediate biomarker for carcinogenesis, especially for prospective trials of

chemoprevention, is the appearance of preneoplastic lesions (Einspar et al., 1997); this despite

the fact that the vast majority of such lesions do not, and perhaps cannot develop into malignant

tumors (Pretlow et al., 1995). Mutational biomarkers have also been criticized for not

discriminating between exposure and susceptibility, or for not being more agent-specific. The

best reply to such criticisms is to apply the markers we have now in the most appropriate way,

and if such discrimination is found to be important, to continue to develop methods to further

specify the relative contributions of each factor in each particular disease or lesion.

One final thought. All of the preceeding is based on the assumption that toxicology, pathology

etc., will continue to play an important role in oncology. History, however, suggests that

science, even medical science, tends to follow the fad of the latest technology, even when it is

not necessarily appropriate. With the recent completion of the first phase of the human genome

project, we have entered into a period of increased enthusiasm for genomic research that may or

may not complement the types of research discussed in this report. We mentioned earlier that

every cell from an 80 year old man still carries his entire genetic code, facilitating such genomic

research, even in such late-onset diseases as cancer. Our 80 year old man also has a complete

record of his lifetime accumulated exposures, at least genotoxic exposures, in his cells, although

different aspects may be found in different cell types, locations, etc. We must develop methods
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of rapidly screening an individual for evidence of cumulative past exposure that can be used to

characterize their level of response. The justification most often given for the extensive

involvement of the U.S. Department of Energy in the human genome project was, essentially,

how can we identify mutations unless we know what the normal gene sequence is? We now

need to take up this challenge and use the technologies developed for charting the evolution of

the hereditary genome through generations to begin to map the changes in the somatic genome

that occur over a normal lifetime, and during the carcinogenic process.
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Figure 1. Epidemiology of induced human disease in the mechanistic context of molecular

toxicology. Insights into the absorption, distribution, metabolism and elimination of

environmental agents are combined with insights into the mechanism of the disease process itself

to provide potential intermediate steps in the progression that can be tested for validity and

applied as surrogates for the eventual health effect (after Hulka and Wilcosky, 1988; Schulte,

1989; Hulka, 1991; Perera et al., 1993).

Figure 2. Comparison of in vivo somatic mutation at the GPA locus in a population of untreated

patients with diverse types of cancer and disease-free controls.

Figure 3. Comparison of in vivo somatic mutation at the HPRT locus in a population of

untreated patients with diverse types of cancer and disease-free controls.
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